盆暗の学習記録

データサイエンスを中心として,日々学んだことの備忘録としていく予定です。初心者であり独学なので内容には誤りが含まれる可能性が大いにあります。

Webページ制作の入門時に参考にしたサイト等まとめ

最近HTML,CSSJavascriptをちょっと勉強し,シンプルなWebサイトを作っていました。

その際に参考にしたサイトや,使ったツールをまとめます。

Webページの骨格を作る段階で参考にしたサイト

saruwakakun.com

HTMLやCSSの基本や,ちょっとした悩むポイント(色をグラデーションにするには?要素を中央に寄せるには?など)をわかりやすく解説しています。このサイト自体のデザインも非常に優れているので,デザインの勉強にもなります。

レスポンシブサイトへの移行

スマートフォンなど,パソコン以外の端末で閲覧される時への対応は,主に以下のサイトを参考にしました

ics.media

レスポンシブサイトを作るにあたって,どういう手法が選択肢に挙げられるのかといった点を把握できます。

Flexboxについて

私は結局Flexboxを使うことにしましたが,その際に参考になったのが主に以下のサイトでした。

www.webcreatorbox.com

ics.media

www.kerenor.jp

こちらのサイトはデモページがデザインの参考としても実装例としても非常に優れていました。

クロスブラウザ対応

autoprefixer.github.io

Google ChromeInternet Explorerなど,ブラウザは様々あり,それぞれに合わせたCSSの書き方が求められる場合があります。

自動でCSSを翻訳することでそこの処理を簡単にしてくれるAutoprefixerというツールがあるのですが,これはインストールが必要で,面倒です。

そこで,インストールいらずでWeb上で動作してくれるAutoprefixer CSS onlineという便利なモノが作られています。これには助けられました。

細かい部分を作る上で参考にしたサイト

総合

リファレンス

冒頭ですでに紹介しているサイトなのですが,この「レファレンス」のページを見ながらやることで,自分の作りたいCSSのボタンや見出しなど,細かい部分を簡単に作ることができました。

「やりたいこと(目的)」別に解説する構成なので,やりたいことが決まっている場合は目的の情報が探しやすいですし,やりたいことが決まっていない場合はこの辺りのページを眺めていくことで「こういうこともできるのか!」と新たな気付きにつながってやりたいことを決めるきっかけになります。

メニュー

メニューに関しては以下のサイトが参考になりました。

photoshopvip.net

photoshopvip.net

デモが多くて非常に良いページです。

favicon

realfavicongenerator.net

自分のサイトに正しくfaviconを設定できているのかをチェックしたり,faviconにしたい画像を指定してfavicon用ファイルを生成したりしてくれるWebアプリです。

Canvas

HTML5Canvas要素にJavascriptでアニメーションを書いてきれいな映像を作りたいときに参考にしました(これはまだわからないところも多く勉強中ですが…)

developer.mozilla.org

yoppa.org

こちらのサイトはDEMOがスゴいです。たとえばこれhttps://ics.media/tutorial-createjs/index.html

CreateJS入門サイト - ICS MEDIA

コードを書くときに使用したテキストエディタ

エディタはしっかり検討して選択しているわけではありませんが,主にMicrosoftのExpression Webという,開発終了とともに無料になったエディタを使っていました。

このエディタはやや古いですが,編集中のHTMLのclassやidがリンクと化してクリックすると対応したcssの対応した箇所に飛んでくれるようになるので,CSSのclassやidの管理に慣れていないうちは非常に助けられます。

Expression Webは以下でダウンロードできます。下部の「Details」をクリックすれば日本語版のリンクも展開します。

Download Microsoft Expression Web 4 (Free Version) from Official Microsoft Download Center

また,GitHubAtomも使っていました。ちゃんとコードを書くようになればこっちのほうが便利になっていくのだと思いますが,どういうパッケージを入れるべきか等は勉強中です…

[読書メモ]伊神満(2018)『「イノベーターのジレンマ」の経済学的解明』

「イノベーターのジレンマ」の経済学的解明

「イノベーターのジレンマ」の経済学的解明

を読みました。

一般向けの経済学の書籍の中ではトップクラスに面白い部類の本だと思います。

この本はどういう本なのか?

  • 経営学者クリステンセンのベストセラー『イノベーションのジレンマ』(原題:The Innovator’s Dilemma)と同様の問いに対して,経済学の理論と計量経済学の実証分析を用いて,定量的に分析し,経済学者の視点から「補強」を試みた本(筆者の研究を一般向けに噛み砕いた本)
    • イノベーションのジレンマ』:「一時はトップの座にいた企業が技術革新に対応できず,その地位を失ってしまうのはなぜなのか」という問いに対して,業界関係者へのインタビューや業界レポートの読み込みといった質的な調査に基づく分析を行った

イノベーションのジレンマ―技術革新が巨大企業を滅ぼすとき (Harvard business school press)

イノベーションのジレンマ―技術革新が巨大企業を滅ぼすとき (Harvard business school press)

この研究は経済学のどのへんに位置するモノなのか?

  • 経済学上のジャンル → 産業組織論
  • 使われている実証分析のジャンル→ 構造推定
    • 構造推定 :①分析対象を説明する経済学のモデル(理論)を定め(構造化),②現実のデータが経済モデルに従っていると仮定して経済モデルのパラメータを推定することにより,経済の構造を推定する手法。
  • 構造推定と対になる分析のジャンルが自然実験アプローチ(誘導型推定)
    • 自然実験アプローチ(誘導型) :ランダム化比較試験や自然実験・疑似実験などの実験的なアプローチによって実証分析を行う。
    • 昨年に出た一般向けの経済学の本『原因と結果の経済学』や『データ分析の力』は実験アプローチです。同じ「経済学」でも,構造推定のほうがより経済学っぽくデータ分析を行います(経済モデルを作るため)

f:id:nigimitama:20180728012847p:plain

「原因と結果」の経済学―――データから真実を見抜く思考法

「原因と結果」の経済学―――データから真実を見抜く思考法

データ分析の力 因果関係に迫る思考法 (光文社新書)

データ分析の力 因果関係に迫る思考法 (光文社新書)

この本のあらすじ

この本は以下のような構成になっています。

  1. イノベーションのジレンマを説明する3つの理論(共喰い,抜け駆け,能力格差)について説明する
  2. それらの理論に基づいて実証分析(構造推定)を行う
    (理論に基づいて企業の利潤関数などの経済モデルを作り,経済モデルのパラメータを推定する)
  3. 推定結果からシミュレーションなどを行い,政策について議論する

以下で理論の概要と推定までの大まかな流れ(上記の3つのうち,1および2の途中まで)をご紹介します。

1. 理論

① 共喰い(Cannibalization)

共喰い(置換効果):当該市場にすでに製品を投入している「既存企業」が新商品を市場に投入した際,既存の自社商品と市場を共喰い(競合)してしまうこと。

  • 共喰い現象は,既存企業の技術革新を抑制する方向に影響する
  • 共喰いの度合いは,その財の代替性による。

  • 例:カメラのフィルムを世界で初めて発売してフィルム業界の大手だったコダック社は,デジタルカメラを世界で初めて開発したものの,デジタルカメラを普及させるとフィルム事業を喰ってしまうため,デジタルカメラ事業に力を入れなかった。その後,時代はデジタルカメラに移行し,コダックは2012年に破産

② 抜け駆け(Preemption)

抜け駆け(競争効果):(市場で優位に立っている)既存企業は,新参企業の参入により失うものが大きいため,独占的地位を守ろうとする

    • (架空例)ある企業が,ある市場を独占しており,1000億円の売上高を得ているとする。そこに新参企業が参入しようとしており,もし参入されると価格が半分,シェアも半分になるとする。参入されると売上が250億円まで減ることが予想されるため,この独占企業(既存企業)にとっては,新参企業の参入を阻止することは750億円以内の予算を使う価値がある。これが抜け駆けの誘因。
      f:id:nigimitama:20180727232932p:plain
    • (実際の例)InstagramSNS市場に参入して急成長していた2012年に,SNS大手のFacebookInstagramを10億ドルで買収した。当時のInstagramは社員13名で売上高0であり,企業価値は5億ドルと見積もられていた。その中でFacebookは相場の2倍の額を払ったわけだが,Instagramの価値だけでなく「Facebookの競合を無くす」という部分も評価していたと考えれば合理的な判断。FacebookはWhatsAppなど他の新参企業も買収を行っている。MicrosoftGoogleも頻繁に買収を行っている。

③ 能力格差

  • 既存企業には技術革新を抑制するインセンティブも,促進するインセンティブもあることがわかった
  • 既存企業は技術革新を果たすだけの能力が無かったのだろうか?
    • 既存企業の弱点(=大企業病):①惰性・組織変革の難しさ,②経営陣が過去の成功体験に引きずられる, ③組織の末端にある「現場のリアルな情報」は組織のトップに届かない
    • 既存企業の強み:①資金,②人材,③技術,④信用,⑤ブランド
  • 既存企業には長所も短所もあり,新参企業に比べて技術革新を行う能力があるかどうかは一概には言えない → 実証分析で明らかにする

2. 実証分析

  • イノベーションについて直接観測するのは不可能
  • 理論という「補助線」を使ってデータを分析する(構造推定)
  • クリステンセンと同様に,1981~1998年のHDD業界を分析対象とする

実証分析の手順

Step1:共喰いの度合いを測る――需要サイド(需要関数)の推計

  • 共喰いの度合いを測る = 需要の代替性を測る = 需要の交差弾力性を測る
  • 需要の交差弾力性:「競合製品が1%値下げした時に,自製品の売上数量が何%減るか」の指標。「新製品を値下げしたときに,旧製品の売上数量がどのくらい減るか」を表現できる
     ε=\frac{第2財の需要の変化率}{第1財の価格変化率}=\frac{\frac{∆q_2}{q_2}}{\frac{∆p_1}{p_1}}
  • 需要の交差弾力性(=数量と価格の因果関係)をどのように測るか?
    • 数量と価格の回帰分析(OLS:通常最小二乗法)では,相関関係しか計測できない
    • そこで,計量経済学における操作変数法を用いて因果関係を計測する
      • 操作変数法:「内生性(誤差項との相関)をもつ説明変数Xの決定要因でありながら,回帰モデルの誤差項とは相関しない変数」である操作変数(Instrumental Variable : IV)を用いて,内生性バイアスのない(正しい)推定を行う手法

Step2:抜け駆けの原因を測る――供給サイド(利潤関数)の推計

  • 抜け駆けの誘因がどの程度あるのかを測るため,利潤関数を推計したい。
  • 今回扱う問題は,競争相手の出方によって自分の利益も変わってくる「戦略的状況」ないし「不完全競争」
  • 不完全競争を扱うミクロ経済学の理論にはベルトラン・モデル(完全代替財の純粋な価格競争)とクールノー・モデル(代替性が低い「差別化財」の競争)がある
  • 今回はクールノー・モデルのほうが現実にあてはまるため,クールノー・モデルを使用する

Step3:能力格差を測る――投資コスト(埋没費用)の推計

  • 既存企業にとってのイノベーションのコストと新参企業にとってのイノベーションのコストを計算し, どちらのほうがイノベーションに優れているのかを比較する。
  • 分析手法
    • 既存企業の「撤退」「先送り(旧製品のみを作り続ける)」「イノベーション(新製品も作るようになる)」と 新参企業の(参入前の)「参入しない」「参入する」,(参入後の)「撤退」「続行(市場に留まる)」 といった選択肢からなるゲームの木を考える
    • 最終年(1998年)から逆に辿っていき,最も利潤が多くなる戦略を把握する(後ろ向き帰納法
      • たとえば,「もし1988年にイノベーションしたら,企業価値が500億円増えていた」というチャンスの年に「実際には,イノベーションに踏み切った既存企業は少なかった」要な場合は,「既存企業にとってコストは巨額だったはず」と考えられる。

f:id:nigimitama:20180728001943p:plain

(画像の出典:Igami, M. (2015). Estimating the Innovator's Dilemma: Structural Analysis of Creative Destruction in the Hard Disk Drive Industry, 1981-1998.

おわりに

この本の最後の方では,推定した経済モデルを使ってシミュレーションを行い,「理想的な(社会にとって望ましい)イノベーション促進政策はどういうものか?」などの魅力的な問いに答えを出しています。

経済モデルを作って実証分析を行う「構造推定」のアプローチは,分析が置く仮定・前提が多くなる一方で,非常にリッチな情報・示唆を得ることができるのが大変魅力的ですね。

微分積分学の歴史

最近なんとなく気になって微分積分の数学史を調べたのでメモします。

古代

アルキメデスの求積法

取り尽くし法

アルキメデス『放物線の求積』では,曲線の内側に多数の三角形を作り,足していった。

これはユークリッド『原論』にもある「取り尽くし法」

f:id:nigimitama:20180725203157p:plain

古代ギリシャ人の考え方

古代ギリシャ人達は一般的に無限を回避して議論していた。(無限はパラドクスを生み出したり,議論に厳密性を欠く可能性があるため)

中世

16~17世紀前半

ケプラー(Kepler, 1571-1630)

  • ドイツの天文学者
  • 天体の運動に関するケプラーの法則を発見 (地動説の精緻化+太陽と惑星の間に磁力のような引き合う働きを発見,などの功績)
  • ケプラーの第2法則」(惑星と太陽とを結ぶ線分が単位時間に描く面積(面積速度)は一定である)で扇形の面積を,アルキメデスのように無限に小さな三角形に分けて足し合わせることで計算
  • 『葡萄酒樽の新立体幾何学』(1615)
    • 樽に入ったワインの体積を,「無限に薄い円盤の集まりと見なす」ことで計算

カヴァリエリ(Cavalieri, 1598-1647)

  • ガリレオの弟子

  • ケプラー『葡萄酒樽の新立体幾何学』にヒントを得て,「面を無限に小さく分割すると線になり,立体を無限に小さく分割すると面になる」と発想(カヴァリエリの原理

f:id:nigimitama:20180725203251j:plain

トリチェッリ(Torricelli, 1608-1647)

  • ガリレオの弟子
  • 最も有名な業績は実験により「真空」を発見したこと
    • アリストテレスは自然界に真空はないと考えていて(「自然は真空を嫌う」),17世紀もその考えが根強く信じられていた。 (とはいえ,ポンプで汲み上げられる高さに限界があることなど,真空を認めなければ説明できない事象が多くなっていた)
  • カヴァリエリの考え方を発展させ,放物線に囲まれた部分の面積や,曲線を回転させてできる立体の体積を求める方法を考案

17世紀前半までの積分まとめ

  • アルキメデスの時代から,円や放物線などの「特定の曲線に関する求積法」は見つかってきたが,「どんな曲線にも対応できる一般的な求積法」はまだ見つかっていなかった

17世紀後半:微分積分の基本定理の発見

この頃の社会的背景

  • 「砲弾の弾道計算をしたい」というニーズがあった

  • 重力に従って次第に落ちていき,刻々と進行方向を変化させる弾道を捉える方法がなかった

    変化を計算する新しい数学(のちの微分法)が求められた

ロベルヴァル(Roberval, 1602-1675)

  • 「運動する物体の軌跡(曲線)の接線が,その瞬間のその物体の進行方向を示す」ことを明らかにした
    • → 正確に接線を引くには,接線をどう引いたらいいのか?という問題が生じた

接線問題

  • デカルトフェルマーなど多くの数学者が「接線をどう引くか」という問題に取り組んだ
  • 特定の曲線に対する接線の引き方は考案されたが,どの曲線にも使える一般的な方法が見つからなかった
  • フェルマーは一般的な計算方法に最も迫っており,ニュートンフェルマーを参考にした

ニュートン(Newton, 1643-1727)

  • 主な功績

    1. 万有引力の法則の発見とニュートン力学の創始(1687『プリンキピア』)
    2. 微分積分の基本定理(「微分積分が互いに逆の操作・演算である」)を発見
  • 1665年5月ごろまでには微積分の基本定理を認識していたとされているが,本としては出版したのは『求積論』(1704)

  • 微積分の発想:運動の変化量を捉える

    • 「紙の上に書かれた曲線は,時間とともに動く小さな点が動いた軌跡である」という考え方

    • 動く点の進行方向を計算することで,接線の傾きを求める

      • ニュートンは点の動く速度を「流率」と呼び,動く線が作る面積を「流量」と呼んだ
    • 一瞬の時間を表す「 \omicron(オミクロン)」という記号を使用

    • 動く点が x軸方向に移動した距離を \omicron p y軸方向に移動した距離を \omicron qとし,一瞬の間に点が動いた軌跡の直線の傾きを \frac{\omicron q}{\omicron p}=\frac{q}{p}で表した。

  • 表記法

    • ニュートンは後に記号を変更している
      • 接線の傾きを表す記号は \frac{q}{p}から\frac{\dot{y}}{\dot{x}}に,\omicron p \omicron \dot{x}に, \omicron q \omicron \dot{y}にした。
    • 積分の記号は\acute{x}
    • やはりライプニッツの記法のほうが使いやすかったのであまり流行らなかった。今は物理学で使われることがあるらしい。

ライプニッツLeibniz, 1646-1716)

  • 多方面で才能を発揮した人
    • 手回し計算機の発明,二進法の考案,哲学での単子論の提唱,物理学での現代のエネルギーに近い概念の考案…
  • 1675年に微積分の基本定理を発見
  • 1684年に微分の論文「極大と極小にかんする新しい方法」を発表
  • 1686年に積分の論文「深遠な幾何学」を発表
  • 微積分の発想:幾何学的な特徴を突き詰めていく
  • 表記法

18世紀:「無限」を使う微積分の厳密性が問われる

その後はライプニッツの後継者が微積分を洗練させた

バークリ(Berkeley, 1685-1753)

  • 哲学者。

  • 1734『解析家―不信心な数学者へ向けての論説』

    • 微積分は「無限に小さい」という,0に等しいような,等しくないような存在を使っての議論であるため,微積分の基礎に関して厳密性が欠けていることを批判

    • ”はじめは「 \omicron \neq 0」として議論をはじめ,最後には「 \omicron = 0」とするのはおかしい”

マクローリン(Maclaurin, 1698-1746)

  • ニュートンの弟子
  • 1742『流率論考』
    • 「無限小」はニュートン微積分法の証明を簡略化するために使った考え方
    • 無限小を使わずとも,アルキメデスの厳密な論証法と運動学的な直観に基づく方法によって微積分学の基礎づけは可能であると主張
    • この考えはイギリスの多くの数学者に受け入れられたものの,論争の完全解決にはならず

オイラー(Euler, 1707-1783)

  • 1744『極大または極小の性質を持つ曲線を見出す方法,あるいは最広義での等周問題の解法』

  • 1748『無限解析入門』

    • 解析の教科書
    • 1696年にロピタル・ベルヌーイが書いた無限解析の教科書とは異なり,オイラーは関数(functio)の定義から始めている(関数を重要視)
    • 関数(functio)という用語は,「曲線に対する接線と関連する量」といった意味でライプニッツによって使用されていたが,「解析的表示」として関数の概念を明確に規定したのはオイラーが最初

ラグランジュ(Lagrange, 1736-1813)

  • オイラーの後継者

  • 関数の概念を考察

  • 1797『解析関数論』

    • 任意の関数 f(x)がテイラー級数  f(x+i)=f(x)+f'(x)i+\frac{f''(x)}{2!}i^{2}+\frac{f'''(x)}{3!}i^{3}+\cdots に展開できることを純粋に代数的な方法で立証

    • すべての関数 f(x)級数に展開できることを前提に   f(x+i)=f(x)+pi+qi^{2}+ri^{3}+\cdots とおき, iに依存しない xの関数 p,q,r,\cdotsを計算してテイラー級数展開を導いた。

    • 一番目の関数 p f(x)から「導かれた」関数で, f'(x)と表した。→「導関数

    • この証明の利点の一つは,無限小を巡る基礎の問題に関する不確実性から微積分が開放されたかもしれないということ。

    • それは微積分学が幾何ではなく代数として確立されることを保証するものだった

  • ラグランジュの理論は批判されることになったが,その取り組みはコーシーに影響を与えた

コーシー(Cauchy, 1789-1857)

  • ラグランジュの考えに沿って,幾何学的な直観に依存しない厳密性を代数解析に持ち込むという「代数解析の厳密化」を推し進めた一人
  • 1821『王立エコール・ポリテクニクの解析学教程―第一部 代数解析』(通称『解析教程』)
    • 極限」をかなめとした基礎づけ
      • 無限小量を,極限が0となる変量と定義
      • そこから連続関数を定義
    • 極限概念を用いた級数の収束に多くのページを割いた(「コーシーの収束判定法」)
  • 1823『王立エコール・ポリテクニクの無限小計算講義要録』
    • コーシーの極限概念として有名な「ε―δ論法」が登場
    • この論証法により,「限りなく」や「近づく」といったあいまいな用語の使用を回避して導関数を厳密に定義することに成功

メモ系アプリ類の比較(Evernote, Dropbox Paper, Typoraなど)

普段のメモをどうやって残すか,ということについて頭を悩ませています。

私のニーズとして

  1. Markdownで記述できる
  2. TeXで数式を記述できる
  3. 簡単に画像を挿入できる(クリップボードから貼り付けなど)
  4. 複数の端末からアクセスできる(スマホやPCなど)

があるのですが,これらをすべて満たすツールになかなか出会えていません。

最近,EvernoteDropbox Paper,それからMarkdownエディタのTyporaを試したので,今回はそれらの長短をまとめてみます。

ついでに,私が今まで使ってきたツールも載せていきます。

今まで使ってきたツール

はてなブログ

はてなブログもいいメモ帳になるんじゃないかと思っていた時期が僕にもありました…

  1. Markdown → △
    • 基本的に使えるが,仕様上Tabキーが使えないのでリストのインデント(段落)をつけるためにタブ1回=スペース4回換算で何十回もスペースを連打する羽目になり使いにくい
  2. TeX → △
    • 要求されるTeXの記法が独特であり正直使い物にならない
  3. 簡単に画像を挿入できる → ○
  4. 複数の端末からアクセスできる → ○

Markdown

Markdown(.md)をAtomで扱うこともありました。

数式や画像を乗せる必要がなければこれで足りますが,それらが必要なときは困ります。

  1. Markdown → ○
  2. TeX → ✕
  3. 簡単に画像を挿入できる → ✕
  4. 複数の端末からアクセスできる → ✕

Rmarkdown

私はメモにRmarkdownを使うことも多いのですが,これは画像をクリップボードから貼り付けできなかったり,日本語入力が不得手であったりと,問題も少しあります。

  1. Markdown → ○
  2. TeX → ○
  3. 簡単に画像を挿入できる → ✕
  4. 複数の端末からアクセスできる → ✕

最近試したツール

Evernote(本家)

メモ帳ツールが本業なのもあって基本的にクオリティが高いです。 しかし,私のニーズは満たしませんでした。

  1. Markdown → △
  2. TeX → ✕
  3. 簡単に画像を挿入できる → ○
  4. 複数の端末からアクセスできる → ○

サクサク気軽にメモできる点と,手書きメモなどにも対応する高機能な点から,今後も使っていこうとは思います。

Evernote + Marxico

MarxicoはGoogle Chromeのアプリで,MarxicoのエディタでMarkdownを書くとEvernoteが認識してくれる形に変換してEvernoteに保存してくれます。

詳細はこの記事などが良さそうです: https://nelog.jp/marxiconelog.jp

  1. Markdown → ○
  2. TeX → ○
  3. 簡単に画像を挿入できる → ○
  4. 複数の端末からアクセスできる → △

MarkdownTeXも使うことができて,画像も貼り付けができて素晴らしいです。

f:id:nigimitama:20180617211546p:plain

しかし, - TeXで書いた数式は画像として記録される - Googleアカウントの連携アカウントだと,Marxicoと連携できなかった
 → 私の普段使いのアカウント(Googleアカウント)はMarxicoでは使えなかった - Google Chromeアプリという形態 - 私は普段Google Chromeはあまり使わない - パソコンからでなければ編集できない

といった点は少し残念でした。

Dropbox Paper

Dropboxのメモ機能です。複数人での共同作業用に作られていて,普通のメモ帳ツールとは目的が異なっていますが,メモ帳としてもそこそこ優秀です。

qiita.com

しかし,Markdownの見出しがレベル3(###)までしか対応していなかったり,TeX記法の数式が書けなかったり,使いにくい部分も…。

f:id:nigimitama:20180617214720p:plain

  1. Markdown → ○
  2. TeX → ✕
  3. 簡単に画像を挿入できる → ○
  4. 複数の端末からアクセスできる → ○

Typora

最強のMarkdownエディタらしいです。実際,非常に使いやすくできています。

qiita.com

確かにMarkdownエディタの中では最強だと思います。Atomからこっちに切り替えようと思います。

フローチャートガントチャートを描くことができるなど,エンジニア向きの機能が豊富なようで,こうした点も素晴らしいと思います。

f:id:nigimitama:20180617214541p:plain

Draw Diagrams With Markdown

しかしながら,行中のTeXが数式にならないという大きな問題がありました。うーむ…。

f:id:nigimitama:20180617214517p:plain

  1. Markdown → ○
  2. TeX → △
    • 行中のTeXは数式に認識してくれない
  3. 簡単に画像を挿入できる → ○
  4. 複数の端末からアクセスできる → ✕
    • PCのみ,ローカル管理のみ

まとめ

私のニーズをすべて満たすものはありませんでした。誰か作ってください…(私に技術力があれば「いい市場見つけた!」とか言って作るんですが…)

Evernote + Marxico の構成が今の所一番良かったので,しばらくはこれを使うことにします。

追記(2018/7/10)

Typoraで

行中のTeXが数式にならない

と書きましたが,設定を変えれば使えるみたいです!

f:id:nigimitama:20180710185219p:plain

科学史についてのメモ

諸学問について全体的に興味を持っていたため,「科学」を知ることができそうなこの本を買いました。

この本は,序盤に

  • 「科学とはなにか」という問いに答えるには,哲学だけでなく,歴史学社会学も含めた多面的な考察が要求される
  • ゆえに本書では,(1)科学史,(2)科学哲学,(3)科学社会学,の三本を柱とした広い意味での科学論を述べる

といったことが書かれており,実際にこれら(1)~(3)の構成になっているため,ここでのメモも3つに分けていきます。

今回は,科学史について,この本やインターネット上の資料を基にメモしていきます。

1. 古代――アリストテレス的自然観

コスモロジー

(1)古代天文学

古代の天文学理論(セントラル・ドグマ)

  1. 天上と地上の根本的区別
    • エンペドクレスの「四元素説:万物は地(土),水,火,風(空気)から構成される。四元素は「愛」と「憎」によって結合と分離を繰り返し,自然現象を現出させる
    • 月の天球を境にして,天上界と地上界は分かれる。地上界は四元素からなるが,天上界はエーテルという第五元素で形作られている
  2. 天体の動力としての天球の存在
    • 星が回転するのではなく,天球(透明な球殻)が回転し,天球に付着する星も地球の周りを回る
  3. 天体の自然運動としての一様な円運動

f:id:nigimitama:20180602001503p:plain

セントラル・ドグマでは説明できない「変則事象」

  1. 地球と惑星(水星,金星,火星,木星土星,太陽,月)との距離が変化している
  2. 惑星の不規則な運動

古代天文学の難問(アポリア)(上記の2つの問題)への取り組み

  1. エウドクソスの「同心天球説:異なる角度の回転軸を持つ複数個の天球
    • しかし,天球なので「地球と惑星の距離が変化している」ということを説明できない

f:id:nigimitama:20180602001543p:plain

  1. アポロニオス・ヒッパルコスらによる「周転円説」(プトレマイオスの天動説
    • 「離心円(地球から離れたところに軸がある円軌道)」「周転円(地球を中心とする第一次円軌道の円周上の一点を中心とする小円)」「エカント(離心円上の点,惑星はエカントに対して一定の角速度で運動する)」などの概念を導入
    • 惑星の「一様な円運動」というセントラル・ドグマを逸脱することなく惑星の不規則運動を説明できた
    • 当時の観測データとも高い精度で一致しており,非常に合理的な理論だった
    • その後は周転円説の理論の精緻化が進められ,コペルニクスの時代(16世紀)には周転円の数は80個を超えるほど複雑化した
    • 地球から見た惑星の運動が「一様な円運動」というアリストテレス的自然観のドグマを外れたところが唯一の欠点

f:id:nigimitama:20180602001604p:plain

(2) 古代自然学の運動論

  • 自然学の中核は運動論
  • 古代ギリシアの「運動(キネーシス)」とは,石の落下から植物の生長までを含む広範な概念
    • 「可能態(デュナミス)」から「現実態(エネルゲイア)」への移行と捉えられた
    • 例えば,種子(可能態)が樹木(現実態)になる,というように,可能性の実現として考える

古代運動論のセントラル・ドグマ

  1. 自然運動の原因は自然的傾向

    • アルケー(根源物質)である四元素(地・水・火・風)は本来あるべき「自然な場所(natural place)」があり,そこに向かう自然的傾向がある
      • 地上界の中で,上から火>風>水>地の順になっている。火が月の天球近くで,地は地球の中心
      • 地上の物体の自然運動は,自然な場所に戻ろうとする「自然的傾向」によって生ずるものである。物体の自発的運動であり,可能性が現実化される過程である。
  2. 強制運動の原因(外部からの力)は接触による近接作用(押す・引く)

  3. 物体の速度は動力に比例し,媒質の抵抗に反比例する

    • 重さの違う物体を落下させた場合,重いほうが外力が強いため,重い物体ほど早くなる

セントラル・ドグマでは説明できない「変則事象」

  1. 投射運動:投射された物体が直接的な接触作用を離れても運動を続ける現象を説明できない

    • この問題への古代運動論の答え
      • プラトンの「まわり押し理論」:投射されたボールは周りの空気を押し分けながら進み,ボールが進んだ後ろの空気は希薄になるため,「自然は真空を嫌う」ことから押し分けられた空気が真空状態になった場所に急激に回り込むため,その動力がボールを更に前へ進める。(空気が直接的な近接作用を与えるためボールは飛び続ける)
  2. 落体運動の加速度:自由落下において物体の速度が次第に増していく現象

    • アリストテレスによれば,「落体の速度は重さ(動力)に比例する」ため落下速度は一定になるはずだが,現実はそうならない
    • この問題への古代運動論の答え:
      1. 物体が落下するにつれて,それに抵抗する空気の層が薄くなるのだから,抵抗が減少するにつれて落下速度が増加する。
      2. 故郷に近づくと足取りが軽くなるように,物体も自分の自然な場所が近づくにつれて,自然的傾向が強まって速度を増す。

2. 中世――古代知識の断絶と復活

3. 近世――科学革命

  • 科学革命はコペルニクスの『天球回転論』(1543年)~ニュートンの『自然哲学の数学的諸原理(プリンキピア)』(1687年)の約150年間

科学革命(1) 天文学

  • 古代の天文学理論(セントラル・ドグマ)(再掲)
    1. 天上と地上の区別
    2. 天球の存在
    3. 一様な円運動

コペルニクス

  • プトレマイオスの天動説の体系は3の「一様な円運動」を捨てている
  • コペルニクスは,宇宙の調和的秩序(コスモス)を回復しようとし,古代の天文学理論のうち2と3に忠実であろうとして1を捨てた
    • 伝統的な「一様な円運動」の魔力に深く囚われていたために,「天上と地上の区別」を捨てるという大胆な発想に至り,科学史上稀に見る革新を成し遂げた
    • プトレマイオスの体系では周転円が80個以上になっており計算が複雑だった一方,コペルニクスの説であれば暦作成などの計算が楽になるという実用性の面も,地動説の受容を促進していった

f:id:nigimitama:20180602010205p:plain

ケプラー

  • コペルニクス固執していた「一様な円運動」と「天球の存在」のドグマを打ち破り,近代天文学への道を切り開いたのがヨハネス・ケプラー
  • 「一様な円運動」の否定

    • ケプラーは師のティコ・ブラーエから受け継いだ観測記録から火星の軌道を推定する作業に取り組み,以下の法則を発見した
      • 第1法則(楕円軌道の法則):惑星の軌道は真円ではなく楕円である
      • 第2法則(面積速度一定の法則):惑星と太陽とを結ぶ線分が単位時間に描く面積(面積速度)は、一定である。
        →「円運動の一様性」を否定
      • 第3法則(調和の法則):惑星の公転周期の2乗は、軌道長半径の3乗に比例する。太陽中心説を裏付けるとともに,宇宙の数学的秩序を発見
  • 「天球の存在」の否定

    • ケプラーは新プラトン主義に基づく神秘主義的側面を持っていた
    • 惑星の運動に作用を及ぼす「運動霊(anima motrix)」という概念を考えていた。
      • 運動霊が惑星に与える力は,太陽からの距離に反比例して弱くなるものとされた。
      • 運動霊の概念は,神秘的色彩を無くせば後の万有引力の概念への第一歩と言える概念であった。
    • ギルバートの『磁石論』(1600年)を読んで以降は運動霊の働き(今日における重力概念)を「磁力」によるものと考えていた
      →「天球の存在」の否定
  • ケプラーを契機として,天文学が「天体の幾何学」から「天体の物理学」へ転換していった

科学革命(2) 物理学・運動論と自然の数学化

「宇宙という書物は数学の言葉で書かれている」

  • 中世にピュリダンの「インペトゥス(impetus,勢い)理論」が運動論を前進させたが,インペトゥス理論もアリストテレス存在論を前提としている過渡的理論であり,真の意味で近代力学の礎を築いたのはガリレオである
  • ガリレオは運動論の革新を成し遂げただけでなく,自然観を質的なものから量的なものへと変えた。
    • 「宇宙という書物は数学の言葉で書かれている」というようなことを『偽金鑑識官』(1623年)で述べている。
    • この言葉は近代科学の方法論的マニフェストとでも言うべきもの。

ガリレオの運動論:物体の運動を数量的に定式化

  • ピサの斜塔の実験

    • ガリレオは実際には実験していない(斜塔での話は伝説にすぎない)が,思考実験(背理法による論駁)はしている。
      1. アリストテレスの見解(重いものは速く落下する)を仮定する。
      2. 仮に,重い物体は8の速度で,軽い物体は4の速度で落下するとする。
      3. 重い物体と軽い物体の2つの物体を結びつけて落下させてみる。すると,重い物体は減速され,軽い物体は加速されることによって,結合された物体は8と4の中間の速度で落下するはず。
      4. しかし,結合された物体は8+4=12の重さを持つため,8よりも速く落下しなければならない。ここに矛盾がある。
  • 落体の法則

    • ガリレオは物体の落下に関して,上記の論証だけでなく実験も行い(近代の実験科学の成立),落体の法則を発見した。
    • 第一法則:真空中ではすべての物体は同じ速度で落下する
    • 第二法則:自由落下する物体の落下速度は落下時間に比例し,落下距離は落下時間の二乗に比例する
  • 慣性の法則:すべての物体は外力が働かない限り,静止または等速直線運動を続ける

    • (現実には空気抵抗や摩擦があるため,等速直線運動を続けることはなく最終的には停止する)
      → 古代運動論のドグマ (1)「自然運動の原因は,自然な場所に戻ろうとする自然的傾向によるもの」は無用の概念となった
      物体を「四元素の性質」など「質的」な説明を行う時代から「量的」な説明を行なう時代に転換した
    • 投射運動も慣性の原理と落体の法則で説明できるため,古代運動論のアポリア(未解決だった難問)は解決された

ニュートン『自然哲学の数学的諸原理(プリンキピア)』

  • ニュートンは数学的自然科学の体系を完成させた
  • 『プリンキピア』ではユークリッドの『原論』に倣って,初めに定義と公理を掲げ,そららを基礎命題として定理(命題)を証明していくというスタイルをとっている

    • 基本法則として掲げたのは以下の3点
      • 第 1 法則(慣性の法則):すべての物体は、外力によって強制されない限り、静止の状態、または直線上の一様な運動の状態(等速直線運動)を続ける。
      • 第 2 法則(運動の法則):物体の運動(量)の変化は、作用する力の大きさに比例し、力の向きにおこる。  F = m a(力=慣性質量×加速度)
      • 第 3 法則(作用・反作用の法則):作用には反作用を伴い、2 物体相互の作用は常に大きさが等しく、逆向きである。
  • 第一遍「物体の運動について」の命題11において,「楕円軌道上を回転する物体が楕円の焦点へ向かう求心力(引力)は距離の二乗に反比例する」(逆二乗の法則)と述べた

    • 逆二乗の法則によって,ケプラーの第一法則と第二法則が導出可能であることが示されている
  • その後,あらゆる物体に引力があることを述べ,万有引力」を主張
    • 天上と地上が同じ物理法則に支配されていることを示した
      (リンゴが地に落ちるのも,月が地球に向かって引き寄せられた結果回転運動になるのも,同じく引力によるもの)
       → 古代天文学のドグマ「天地の区別」を打破
    • 引力という遠隔作用によって物体の強制運動が起こることを示した → 古代運動論のドグマ「強制運動の原因は接触による近接作用」を打破
    • プリンキピアの解説をするサイトもあるらしい: 楕円軌道の発見と万有引力の法則(「プリンキピア」の説明)

ここまでのまとめ

ざっくり絵にまとめるとわかりやすいかも,と思って自分用に作成したポンチ絵があるので載せます

f:id:nigimitama:20180604234010p:plain

f:id:nigimitama:20180604234020p:plain

もっと詳しい話

このあたりの話は古典力学という領域に属するらしく,講義ノートを検索してみるとこのあたりの詳しい話を読むことができます。

例えば高知大学の津江保彦氏の「物理学概論Ⅰ」は序盤の方でケプラーガリレオニュートンが発見した法則を概説しています。

科学革命(3) 機械論的自然観

  • 科学革命の背景にあって近代科学の成立を促したのは,自然観の根本的転回
  • 古代・中世のアリストテレス的自然観は,宇宙全体を一つの有機体ないし生命体になぞらえるという点で「有機体的自然観」と呼ぶことができる
  • 科学革命によって「有機体的自然観」から「機械論的自然観」に転換した

    • 機械論:自然現象に代表される現象一般を、心や精神や意志、霊魂などの概念を用いずに、その部分の決定論的な因果関係のみ、特に古典力学的な因果連鎖のみで、解釈が可能であり、全体の振る舞の予測も可能、とする立場。
  • 古代のアリストテレス的自然観

    1. 古代ギリシャの「運動」概念は,「可能態」から「現実態」への移行であり,広範な概念であり,種子から樹木への成長で例えることができるようなもの
    2. 「等しきものをもって等しきものを知る」というアナロジー(類比)の方法を使う
      • → 運動など自然現象について考える際に有機体(生き物)をモデルにするのは当然
    3. アリストテレスの「質料形相論(hylēmorphismus)」:あらゆる個物は「質料(hyle)」と「形相(eidos)」が合成されたもの
      • 質料:無規定な素材・材料(=可能態)
      • 形相:材料を限定する「かたち」(=現実態)
      • あらゆる運動(自然現象)は可能体としての質料が現実態としての形相を目指すことで生じる,という考え。
  • 中世のスコラ哲学
    • アリストテレス的自然観を基本的に継承した上で,形相を事物の本質的性質(nature)を現すもの(「実体形相」)と偶然的性質を現すもの(「付帯的形相」)に分けた
    • 実体形相が質料と結合すると実体が生成され,分離すると消滅する,と考えた
    • 例えば人間なら,体が質料で,霊魂が実体形相
    • 物体も,人間における霊魂のように,それをそのものたらしめている「実体形相」が宿っており,それによって物体の運動が引き起こされたり,性質の変化が生じると考えた

デカルトの「物心二元論

  • 省察』の構成

    1. 方法的懐疑
      • 知識の確実な基盤を探求するため,既存のあらゆる知識を疑い,否定した
      • →「我思う,故に我あり(cogito ergo sum)」:疑っている私の存在だけは否定できない
      • 存在するために身体や空間的場所を必要とせず,「思惟する(疑う)」という活動のみで存在を保証されている「私」のあり方は「精神」
      • 「精神」は,その存在をいっさいの物質的なものに依存しない「思惟実体」である
    2. 神の存在証明
      • 神が最も完全な存在者であり,欺瞞者ではない → 観念の客観的実在性(ひいては外的世界の存在)の確保
    3. 「物体」の本性を確認
      • 例えば,蜜蝋は常温では硬いが,加熱すれば液体となる → 抽象化すると残るのは「延長を持ち,柔軟で,変化しやすいあるもの」
      • 「物体」の本性は「延長」であり,生命的なものや精神的なものを含まない「延長実体」である(「物心分離」)
  • 物心二元論

    • 「物体」と「精神」はその本性が明確に異なる2種類の実体(他のものに依存せずそれ自体として存在するもの)
    • 世界は「物」と「心」という2つの実体からなる(物心二元論

心身問題(mind-body problem)

  • 物心二元論では,精神(思惟実体)と身体(延長実体)はそれぞれ独立した実体
  • しかし,人間は肉体が損傷すれば痛みがストレスになり精神に影響を与えるし,精神的ストレスが胃腸の障害を引き起こすこともある。
    「心身結合」の事実はどのように説明されるべきなのか。
  • デカルトの説明:人間の体内をめぐる動物精気(血液の微細な粒子)が媒体となり,脳の松果腺で精神と身体とが接触する

    • では,延長を持たない非物質的な精神がどのようにして身体と接触しうるのか?
    • デカルトは説得的な説明をすることができなかった
  • 心身問題は,自然界から「心」や「感覚的性質」を排除し,現象を物体の機械的カニズムによって説明しようとした科学的自然観が抱え込んだアポリア(哲学的難題)

    • 現代の科学・哲学にとっても避けられない課題
    • 現代科学は生命や精神から神秘的色彩を払拭し,基本的には「物質一元論(唯物論)」へ歩みを進めた
    • 脳科学などの科学的知見を踏まえて「心身問題」を「心脳問題」として捉えなおそうとしている「心の哲学(philosophy of mind)」という現代哲学の一分野がある

4. 近代――第二次科学革命

科学の制度

  • 近代科学は17世紀の科学革命を通じて方法論が確立され,「知的制度」が整った。
    科学知識が蓄えられ,後世に引き継がれるためには,「知的制度」が「社会制度」に組み込まれる必要があった

  • 大学の起源は古代ギリシアにおいてプラトンが紀元前387年頃に建てた「アカデメイア(academeia)」

    • アカデメイアで教育された主な科目:算術,幾何学天文学音楽理論
      • これらは必修科目という意味で「マテーマタ(学ばれるべきもの)」と呼ばれていた。
      • 「マテーマタ」はピュタゴラス学派(「万物は数からなる」と考える学派)に由来し,「数学(mathematics)」に派生

f:id:nigimitama:20180609180628p:plain

  • アリストテレスは「リュケイオン」という学園を創設
    • 「逍遥学派」と呼ばれる弟子たちと回廊を散歩しながら議論するスタイルを採った。
    • アリストテレス形而上学』では,学問が発達するためには人々が日々の生活に追われない時間的・経済的余裕,余暇(スコレー)が必要だと述べている。
      • ギリシア語「スコレー(schole)」は中世ヨーロッパにラテン語「スコラ(schola)」に
      • 「スコラ」はもとは「修道院の附属学校」を意味し,「スクール(school)」の語源

f:id:nigimitama:20180609223822p:plain

  • 「ユニバーシティ」の名を冠した高等教育機関が成立したのは中世後期の12~13世紀ごろ
    • 「総合大学(university)」の語源はラテン語「universitas(組合,ギルド)」で,特に「学生と教師の共同体」の意味
    • 12~13世紀に最初に成立したのはボローニャ大学パリ大学
    • ヨーロッパ中世の大学は一般に4学部制
      • 下級学部(哲学部):リベラルアーツ(自由学芸)を中心とする学部
      • 上級学部(神学部,法学部,医学部から成る):裁判官や官僚,医師などの専門的職業の資格と結びついた学部

f:id:nigimitama:20180609223914p:plain

リベラルアーツと機械技術

  • リベラルアーツliberal arts, 自由学芸,自由七科)

    • 古代ギリシャやローマにおいて,奴隷階級ではなく「自由人」である市民が人格形成するにふさわしい理性的学問という意味で「自由学芸」と呼ばれていたことから「自由」がつく
    • 三科:文法学,修辞学,論理学(弁証法
    • 四科:算術,幾何学天文学音楽理論
  • 機械技術(mechanical arts)

    • 職人階級(古代なら奴隷階級)の手仕事のことを指している。→ リベラルアーツの対となるのが機械技術
    • マイナスのイメージが強かった
      • プラトン『法律』では「市民は誰ひとりとして,職人の仕事に従事してはなりません」
    • 17~18世紀にプラスのイメージがつきはじめた
  • 「百科全書派」

    • 18世紀フランス啓蒙思想の中心にあった一派
    • 編纂した百科全書は『百科全書または学問,芸術,工芸の合理的辞典』と,学問(自由学芸)と技術や工芸(機械技術)を同列に並べている
    • しかし当時の大学はテクノロジーよりも自由学芸を重視し,教育に技術を取り入れることはしなかった
  • 高等教育機関への機械技術の導入

    • フランス革命後のフランスは,ヨーロッパ各国からの干渉戦争に立ち向かうために,軍事技術者を養成するための,大学とは異なる高等教育機関を作った
      → 1794年にパリに設立されたエコール・ポリテクニック(理工科専門学校)
    • ドイツでもこれに倣って高等工業専門学校(Technische Hochschule:TH)を設立

第二次科学革命:科学の制度化

  • 19世紀ヨーロッパにおいて,「第二次科学革命」あるいは「科学の制度化」と呼ばれる出来事が起こった
  • 科学者(scientist)と呼ばれる人が一つの社会階層として出現した
    • これ以前の科学研究は,専門的職業として行うものではなく,貴族や聖職者によって担われていた
    • 19世紀の半ばには,理工系の高等教育機関がヨーロッパ各地に建てられ,産業界でも企業内研究所を設立し始めた
  • 大学の改革も起こった:自然科学も取り入れ始めた
  • 「学会」も登場

5. 現代――「科学の危機」からの脱出

科学の危機(1) 数学の危機

  • 「数学の危機」を経て現代数学へと進化した

1. 非ユークリッド幾何学の発見と形式主義

  • ユークリッド幾何学ユークリッドが『原論』で置いた「平行線公準」が成立しない世界における幾何学
  • 当初,非ユークリッド幾何学は論理的可能性として存在する想像上の幾何学と考えられており,現実の三次元空間を記述するのはユークリッド幾何学だけだと考えられていた
  • ヒルベルト幾何学の基礎』は,非ユークリッド幾何学ユークリッド幾何学は同様に妥当な幾何学であることを明らかにした
    • 幾何学の公理(axiom)は我々の空間直観による自明の真理ではなく,任意の仮定あるいは規約であると考えた。
    • そして,公理の妥当性は,公理系の無矛盾性(互いに矛盾しないこと)や独立性(ある公理が残りの公理から導出できないこと)といった形式的な性格によって保証される,と主張した
    • ユークリッド幾何学も,その基本概念は現実の空間に対応物を持たなくても構わない。「点・直線・平面という代わりに,いつでもテーブル・椅子・ビールジョッキと言い換えることができなくてはならない」
      • このような立場を公理主義という。これにより幾何学は抽象数学のレベルへと上昇した。
      • ヒルベルトは公理主義を更に発展させ,数学は一定の規則に従って形成された数式の間の形式的な「式のゲーム」である,という考えに至った(形式主義
      • 20世紀の数学は形式主義の思想によって導かれていく

2. ラッセルのパラドックスと公理的集合論

  • 集合論で矛盾が発見された
  • ラッセルのパラドックス

    • すべての集合のうち,「自分自身を(要素として)含まない集合」をすべて集めた集合  R = \left \{x | x \notin x \right \} を考える
    •  R \in R(Rが自分自身を含む)を仮定すると,定義より R \notin Rとなる(「自分自身を含まない集合」の集合がRであるため,RはRの要素ではない)
    •  R \notin R(Rは自分自身を含まない)を仮定すると,定義より R \in Rとなる(「自分自身を含まない集合」の集合がRであるため,RはRの要素)
  • このパラドックスの解決に取り組む過程で「数学基礎論」という新たな学問分野が生まれた。

    • 数学基礎論:数学の基盤を論理学や哲学の観点から反省しようとする試み
    • このパラドックスに対しては,集合論の公理に一定の制限を加える(集合の作り方に制限を加える)ことで矛盾を排除
    • 現在では矛盾を含まない「公理的集合論」が構成されている
  • 参考

科学の危機(2) 物理学の危機

  • 物理学の危機:ニュートン力学など古典物理学の限界が明らかになり,現代物理学(相対性理論量子力学)が誕生した事態
  • 古典物理学をベースとした「力学的自然観」で解決できない難問
    1. 光の速度が一定であること
      • 当時は宇宙全体に充満しているエーテルという微細な物質を媒体として光が伝播すると考えており,光の速度は同じくエーテルの中を進む地球の公転速度の影響を受けると予想されていた。
      • マイケルソン・モーリーの実験(1887年)によって,光の速度は地球の公転速度の影響を受けないことが報告され,「では地球はエーテルの中で静止している(天動説)のか?」ということに
    2. 熱現象を支配しているエネルギーの均等分配の法則の妥当性が疑われた
      • 当時は原子や分子が力学法則に従うことを前提に気体の力学的理論を構築しており,エネルギーの均等分配の法則に行き着いた。
      • しかし,実験結果によって,熱現象を支配しているエネルギーの均等分配の法則の妥当性が疑われた

アインシュタインの「相対性理論

  • 相対性原理:物理法則は一定の速度で相対運動するすべての慣性系に対して同じ形をとる
    • (例:時速100kmの乗り物の中でボールを時速60kmで投げても,時速160kmの剛速球になるわけじゃない)
    • ニュートン力学が前提としていた「絶対運動」「絶対時間」「絶対空間」の概念が不要になった
  • 光速度不変の原理:光はどのような慣性系でも真空中を一定の速度で進む
    • エーテル」という概念が「真空」に変わった(エーテルの存在は否定した)
    • 上述の難問「1.光の速度が一定であること」が解決された

M. プランクの「量子仮説」

  • 古典力学:エネルギーなどの物理量は連続量と考える
  • 量子仮説:エネルギーなどの物理量は離散量と考える
    • 「エネルギーには最小単位があり,エネルギーはその最小単位の整数倍の値しかとらない」という仮説
  • 量子仮説によって上述の「2. エネルギーの均等分配の法則の妥当性が疑われた」が解決

日本の臨床心理士は根拠のない治療を行っているのかも

心理職のためのエビデンス・ベイスト・プラクティス入門―エビデンスを「まなぶ」「つくる」「つかう」という本を,心理統計が好きな友人から借りて読みました。

この本では,

  1. エビデンス(根拠)に基づく臨床の実践(Evidence-Based Practice)がいかに重要か
  2. エビデンスとは何か。EBPの実現のためには何をすれば良いのか。
  3. 日本の臨床心理においてエビデンスに基づく実践がいかに為されていないか

といったことが書かれていて,

私は最初「心理学系の実証分析の話をざっくり掴めたら良いかな」という意識で読んでいたのですが, それだけでなく,上に挙げた3番目の「日本でEBPがいかに遅れているか」という部分も大変ショッキングな事実を知ることができて,

「心理職のための」と書かれているものの,私のように一般の人にとっても有益な本だと思いました。

エビデンスに基づく実践(Evidence-Based Practice:EBP)とは

心理学におけるエビデンスに基づく実践とは,患者の特性,文化,好みに照らし合わせて,活用できる最善の研究成果を臨床技能と統合することである。

エビデンス至上主義ではなく,エビデンスは患者のためであり,患者の特性に合わせることを重視するという点は,治療の相手がいる臨床心理特有のものがあり,計量経済学のテキストとの雰囲気の違いを感じました。

エビデンスの質

エビデンスにはレベルがあり,質の高いものから順に

  1. RCT(ランダム化比較試験)の系統的レビュー(メタアナリシス)
  2. 個々のRCT
  3. 準実験
  4. 観察研究(コホート研究,ケース・コントロール研究)
  5. 事例集積研究
  6. 専門家の意見(研究データの批判的吟味を欠いたもの)

となり,EBMエビデンスに基づく医療)においてエビデンスと言うときは1・2を指します。

この本の実証分析の手法について触れている部分は,専門家でなくてもわかりやすく書かれていて,計量経済学分野の一般向けの本『原因と結果の経済学』を思い出します。

「原因と結果」の経済学―――データから真実を見抜く思考法

「原因と結果」の経済学―――データから真実を見抜く思考法

『原因と結果の経済学』ではエビデンスのレベルは

  1. RCTのメタアナリシス
  2. ランダム化比較試験
  3. 自然実験と疑似実験
  4. 回帰分析

と書かれていて,3以降が異なります。

心理学的な実証分析の手法の用語まとめ

  • 準実験:実際に何らかの介入を行ってその変化を測定する研究(臨床研究,介入研究)のうち,ランダム化した対照群を有しないもの

    • 前後比較研究:参加者の一群に介入を行って,その前後の状態を比較する研究
    • 不等価2群比較デザイン:介入群と対照群の比較をするが,割り付けは参加者の希望によるもの
  • 観察研究:研究者が実際に介入を行うことはなく,既に行われた介入や何らかの要因の影響を観察する研究

    • ケース・コントロール研究(症例対照研究):疾病に罹患した集団を対象に、曝露要因を観察調査する。次に、その対照として罹患していない集団についても同様に、特定の要因への曝露状況を調査する。以上の2集団を比較することで、要因と疾病の関連を評価する。
      • 例えば,現在うつ病に罹患している人と健康な人の群を比較し,過去に遡って親子関係の特徴を検討するような研究
    • コホート研究:特定の要因に曝露した集団と曝露していない集団を一定期間追跡し、研究対象となる疾病の発生率を比較することで、要因と疾病発生の関連を調べる
      • 例えば,現在の親子関係の特徴に着目し,アタッチメントに問題のある群とない群に分けて,将来に渡ってフォローアップし,うつ病を発症するか否かを比較するような研究

日本の臨床心理学研究の現状

「臨床研究と言うと事例研究のことだと理解されている向きがある」

  • 日本の学術誌『心理臨床学研究』の2011年から2014年8月までに発表された論文311件のうち,事例研究が198件(63.7%),準実験16件,RCTは0件
  • 一方,アメリカの学術誌 "Journal of Consulting and Clinical Psychology"では,203論文のうちRCT論文が118本,メタアナリシスが11本で,掲載された論文の約59%がRCTまたは系統的レビューで,事例研究は0件

だそうで,日本の臨床心理学研究は「エビデンスに基づかない医療」へとガラパゴスな進化をしたようです。
確かに,論文サイトで検索してみても,臨床心理学系でRCTの論文はなかなかヒットせず,数が少ないようでした。

この本では,執筆時点での疾患別エビデンスも述べられていました。

例えば,箱庭療法という,患者に砂場の箱庭におもちゃを並べさせる治療法が日本で好まれていて(箱庭療法の論文自体が少なく,その多くは日本語で書かれていて),箱庭療法にはエビデンスがないということも述べられていました。
私は小学生の頃に不登校になりカウンセラーに箱庭療法を受けた記憶があり,私にとって身近な臨床心理の治療法は箱庭療法だったわけですが,あれもまさに「エビデンスに基づかない治療」だったんですね。

私が箱庭療法を受けたのは10年前くらいですが,現在も日本臨床心理士会のWebサイトにも載っているくらいなので,おそらく今も現役の治療法なのでしょう。

本書では,害があることが2002年の論文で示されていた「心理的デブリーフィング(被災者に被災した時の状況を語らせたり,描かせたりすること)」という治療法を東日本大震災の被災者に対して行った臨床心理士の話も当時の新聞の画像とともに掲載されていました。エビデンスに基づかない治療の危険性は当時話題に上がったのだと思いますが(検索するとデブリーフィングを使わないようにと政府が注意喚起した文書も出てくるくらいなので),上に述べたように少なくとも2014年までの論文ではEBPは全然進んでいなさそうです。

今後,自分や自分の身近な人がカウンセリングのお世話になることがあったときには(なかなか無いと思いますが),「日本の臨床心理士の多くは根拠のない治療を行っているのかもしれない」ということを心に留めておき,ちゃんとした臨床心理士を選ぶよう努力する必要がありそうです。その時までに日本の臨床心理の状況が変わっていると良いのですが‥。

Rとe-statAPIで在庫循環図

「公的統計の読み方」をテーマにした一般教養科目を履修したところ,
景気判断の指標の一つである在庫循環図を書く機会があったのでメモします。

在庫循環図とは

  • 縦軸に鉱工業指数の在庫指数の前年比を、横軸に同生産指数の前年比をプロットしたもの
  • 通常,反時計回りに回りながら短期の景気循環を表す

f:id:nigimitama:20180505072058p:plain:w700

Rで実行

1. データの取得

2つの方法があります

  1. 経産省のサイトからダウンロードする
  2. e-stat APIからデータを取得する

私はe-statAPIを使いましたが,実は最終更新日が2017年の5月となっており,それ以降のデータはサイトからダウンロードするしかありません。

## 在庫循環図(鉱工業) ----------------------------------------------------
library(dplyr)

# e-stat
library(estatapi)
AppID <- "" # 自分のAPIのIDを入力

# 1. 統計を検索
#ResultData <- estat_getStatsList(appId = AppID, searchWord = "鉱工業生産・出荷・在庫指数")
#ResultData_df <- ResultData %>% as.data.frame()
#ResultData_df %>% head()

# 2. データの取得:0003181031 業種別/四半期、年、年度/原指数 付加価値額生産(平成22年=100.0) ----
#estat_getMetaInfo(appId = AppID, statsDataId = "0003181031")
output <- estat_getStatsData(appId = AppID,
                             statsDataId = "0003181031",
                             cdCat02 = "0001000" # 鉱工業
                             )

# 3. データの取得:0003181068 業種別/四半期、年、年度/原指数 在庫(期末)(平成22年=100.0) ----
#estat_getMetaInfo(appId = AppID, statsDataId = "0003181068")
stock <- estat_getStatsData(appId = AppID,
                            statsDataId = "0003181068",
                            cdCat02 = "0001000" # 鉱工業
                            )

# 4. merge ---------------------------------------------------------
df = data.frame(QE = output[20:56, c('統計項目A')][[1]],
                output = output[20:56, c('value')][[1]])
df = merge(df, 
           data.frame(QE = stock[20:56, c('統計項目A')][[1]],
                      stock = stock[20:56, c('value')][[1]])   )

# 5. 前年同期比を計算する。{(当期ー前年同期)/前年同期}----------
# 前年同期比関数
Year_on_year_rate <- function(x) {
  y <- NA
  for(i in 5:length(x)){
    y[i] = (x[i] - x[i-4])/x[i-4] # 四半期を使ったので-4
  }
  return(y)
}

# run
df <- data.frame(df,
                 output_r = Year_on_year_rate(df$output),
                 stock_r = Year_on_year_rate(df$stock)
                 )
df <- na.omit(df)

2. プロット

# 6. plot:2009Q1 ~ 2017Q1 ------------------------------------------------------
# デフォルトの関数でplot
plot(df$output_r, df$stock_r, type = 'l')
points(df$output_r, df$stock_r)

f:id:nigimitama:20180505064414p:plain:w700

# ggplotでplot
library(ggplot2)
windowsFonts(Yu = windowsFont("Yu Gothic UI")) #新しいフォントファミリーを定義

g <- ggplot(df, aes(x = output_r, y = stock_r)) +
  geom_point(color = "royalblue", alpha = 0.7, size = 2) +
  geom_path(color = "royalblue", alpha = 0.7)+  # geom_lineではなくpathを使う
  labs(x = "生産前年同期比(%)", y = "在庫前年同期比(%)",
       title = "在庫循環図(鉱工業)")+
  theme(text = element_text(family = 'Yu'))+ # 日本語フォント指定
  # 軸
  geom_vline(xintercept = 0)+
  geom_hline(yintercept = 0)+
  geom_abline(intercept = 0, slope = 1, lty = 2)+
  geom_abline(intercept = 0, slope = -1, lty = 2)+
  # データラベル
  geom_label(aes(label = QE, x = output_r, y = stock_r),
             alpha = 0.3, vjust = 0, color = "steelblue")
g

f:id:nigimitama:20180505064537p:plain:w700

# 7. plot:2014Q1 ~ 2017Q1 ------------------------------------------------------

g <- ggplot(df[21:33,], aes(x = output_r, y = stock_r)) +
  geom_point(color = "royalblue", alpha = 0.7, size = 2) +
  geom_path(color = "royalblue", alpha = 0.7)+  # geom_lineではなくpathを使う
  labs(x = "生産前年同期比(%)", y = "在庫前年同期比(%)",
       title = "在庫循環図(鉱工業)")+
  theme(text = element_text(family = 'Yu'))+ # 日本語フォント指定
  # 軸
  geom_vline(xintercept = 0)+
  geom_hline(yintercept = 0)+
  geom_abline(intercept = 0, slope = 1, lty = 2)+
  geom_abline(intercept = 0, slope = -1, lty = 2)+
  # データラベル
  geom_label(aes(label = QE, x = output_r, y = stock_r),
             alpha = 0.3, vjust = 0, color = "steelblue")
g

f:id:nigimitama:20180505072505p:plain:w700